
Configuring tunnels with iproute2
Simone Piunno

Deep Space 6

simone@deepspace6.net

1. iproute2

iproute2 is a package for advanced network management under linux. In practice, it is composed of a
bunch of small utilities to dinamically configure the kernel by means of rtnetlink sockets - a modern and
powerful interface for the configuration of the networking stack implemented by Alexey Kuznetsov
starting from the 2.2 kernel series.

The most interesting feature ofiproute2 is that it replaces with a single integrated and organic command
all the functionalities we were used to find inifconfig, arp, route andiptunnel (and it even adds some
more!).

Nowadaysiproute2 is installed by default on most major distributions, even if their initialization scripts
are still built on commands from the oldnet-toolspackage (e.g.ifconfig or iptunnel - the latter is
actually deprecated). If your distribution doesn’t include this important package, you can always
download it fromftpsiteand compile it yourself.

As the time of this writing, the worst defect ofiproute2 is a relative lack of documentation, partially
compensated by the fact that the syntax of theip command is very easy and similar to the english
language. We believe that people used toifconfig androute shouldn’t encounter any problem usingip
and that they will feel at home in a macommander of hours. In this document we will suppose that the
reader has already a good knowledge of basic networking concepts and has usedifconfig androute in
the past.

2. Introduction to tunnels

Let’s imagine two Internet nodes wanting to exchange data traffic over a protocol different from IPv4 or
directed to a private LAN using non-globally-valid IP addresses. This problem is typically solved using a
virtual point-to-point connection between the two nodes and we call this configuration atunnel.

You can think to every packet traveling over the network like it was an envelope with a few bits inside
and the sender’s and receiver’s addresses written on. Tunnels simply hide this envelope inside an
additional one, with different sender and receiver, effectively diverting the packet’s trip. When the packet

1

Configuring tunnels with iproute2

arrives to the external receiver (the one written on the external envelope), the external envelope is
removed and thrown away, so that the packet can continue its travel to the real destinantion.

The two nodes putting and removing the additional envelope are calledendpointsand need to have a
known IPv4 address. This is why tunnels generally don’t work when traversing a network address
translation (NAT). Moreover, if the tunnel is built throuh a firewall, the latter must be configured ad hoc
to permit this kind of traffic.

A typical tunnel usage is connecting two IPv6 nodes through an IPv4-only network. The two nodes can
build an IPv6-in-IPv4 tunnel pretending to have a real direct point-to-point IPv6 connection, and this
way they can link together two IPv6 islands (6bone works this way, a web of tunnels). Tunnels for
IPv6-over-IPv4 transport come in two different flawors: automaticRFC2373and manually configured.
In this document we will talk only of the latter type.

3. Creating tunnels

Creating tunnels withiproute2 is very easy. First of all you need a name for your tunnel. If you choose
to name it foo then you can create the tunnel with the command:

ip tunnel add foo mode sit remote 192.168.1.42

This way, you created a sit (IPv6-in-IPv4) tunnel with a remote endpoint at the IP address 192.168.1.42.
Notice that we have not specified which IP address to use for the local side of the tunnel, which interface,
and so on. The result can be viewed with the commandip tunnel show:

ip tunnel show
sit0: ipv6/ip remote any local any ttl 64 nopmtudisc
foo: ipv6/ip remote 192.168.1.42 local any ttl inherit

Our tunnel is the one in the 2nd row. Now we can also ask a list of all available interfaces, regardless if
they are real network adapters or software simulations:

ip link show
1: lo: <loopback,up> mtu 16436 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <broadcast,multicast,up> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:48:54:1b:25:30 brd ff:ff:ff:ff:ff:ff
4: sit0@none: <noarp> mtu 1480 qdisc noop

link/sit 0.0.0.0 brd 0.0.0.0
6: foo@none: <pointopoint,noarp> mtu 1480 qdisc noop

link/sit 0.0.0.0 peer 192.168.1.42

2

Configuring tunnels with iproute2

The fact that should get your attention is that while lo and eth0 are marked as beingup, our tunnel is not.
To double check, the good oldifconfig says only:

ifconfig
eth0 Link encap:Ethernet HWaddr 00:48:54:1b:25:30

inet addr:192.168.0.1 Bcast:192.168.0.255 Mask:255.255.255.0
inet6 addr: fe80::248:54ff:fe1b:2530/10 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:0 (0.0 b) TX bytes:528 (528.0 b)
Interrupt:9 Base address:0x5000

lo Link Encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 scope:host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:35402 errors:0 dropped:0 overruns:0 frame:0
TX packets:35402 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:3433996 (3.2 mb) TX bytes:3433996 (3.2 mb)

So we must remember that theip link command shows all available interfaces, regardless of them being
activated or not. To activate foo, we use the command:

ip link set foo up

and to deactivate it:

ip link set foo down

To completely discard our tunnel we use:

ip tunnel del foo

4. Special tunnels

In the previous paragraph, we’ve seen how to build an IPv6-in-IPv4 tunnel, now we’ll examine a few
different situations.

3

Configuring tunnels with iproute2

4.1. GRE tunnels

If you don’t need IPv6 but for example you want to carry normal IPv4 traffic through a non-cooperating
transit network, then you’d better usemode gre instead ofmode sit . For example:

ip tunnel add foo4 mode gre remote 192.168.1.42
ip tunnel show
gre0: gre/ip remote any local any ttl inherit nopmtudisc
foo4: gre/ip remote 192.168.1.42 local any ttl inherit
ip link show
1: lo: <loopback,up> mtu 16436 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <broadcast,multicast,up> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:48:54:1b:25:30 brd ff:ff:ff:ff:ff:ff
7: gre0@none: <noarp> mtu 1476 qdisc noop

link/gre 0.0.0.0 brd 0.0.0.0
9: foo4@none: <pointopoint,noarp> mtu 1476 qdisc noop

link/gre 0.0.0.0 peer 192.168.1.42

GRERFC2784is a particular tunnelling protocol supported by Cisco routers which is capable to carry
different protocols over IPv4. There’s another kind of tunnels implemented by linux:ipip . The latter is
also useful for IPv4-in-IPv4 encapsulation, but it’s implemented only by linux and does only unicast IP
over IP (so you can’t transport for example IPX or broadcasts). In general, GRE is better.

4.2. Explicit local endpoint

Even if the kernel is smart enough to choose for you, it could be a good idea to explicitly force the local
IP address and interface we’re going to use for tunneling. To do that, we can use thelocal anddev
parameters:

ip tunnel add foo mode sit local 192.168.0.1 remote 192.168.1.42 dev eth0
ip tunnel show
sit0: ipv6/ip remote any local any ttl 64 nopmtudisc
foo: ipv6/ip remote 192.168.1.42 local 192.168.0.1 dev eth0 ttl inherit
ip link show
1: lo: <loopback,up> mtu 16436 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <broadcast,multicast,up> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:48:54:1b:25:30 brd ff:ff:ff:ff:ff:ff
4: sit0@none: <noarp> mtu 1480 qdisc noop

link/sit 0.0.0.0 brd 0.0.0.0
11: foo@eth0: <pointopoint,noarp> mtu 1480 qdisc noop

link/sit 192.168.0.1 peer 192.168.1.42

Please notice that now the interface is labeled as foo@eth0, to remind us where the tunnel has been
explicitly connected.

4

Configuring tunnels with iproute2

4.3. Time-to-live

When using tunnels, creating accidental loops in the network it’s easy. To limit the problem, it’s
fundamental to generate packets with a low TTL value. Initial TTL can be specified by thettl
parameter inip tunnel add. The default value is inherited from the network interface the tunnel is
associated to.IANA suggests using 64 for TTL.

5. Assigning an IP address to the interface

Like any other network interface, tunnels can have one or more addresses assigned to them.

5.1. Main address

Assigning the main address is straightforward:

ip addr add 3ffe:9001:210:3::42/64 dev foo
ip addr add 192.168.0.2/24 dev foo4
ip addr add 10.20.30.40/8 dev eth0

The number immediately following the slash is to suggest to the kernel the network prefix we prefer,
useful to automatically compute broadcast address and netmask on IPv4 LANs (this is called CIDR
notation). However, tunnels are point-to-point interfaces and this number is then ignored.

Note: to be able to assign an IP address to an interface, first you need to activate the interface using:

ip link set interfacename up

To remove an address from an interface, you can obviously usedel instead ofadd:

ip addr del 3ffe:9001:210:3::42/64 dev foo
ip addr del 192.168.0.2/24 dev foo4

We can even ask for a list of all the IP addresses in use on our server:

ip addr show
1: lo: <LOOPBACK,UP> mtu 16436 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 brd 127.255.255.255 scope host lo
inet6 ::1/128 scope host

2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100
link/ether 00:48:54:1b:25:30 brd ff:ff:ff:ff:ff:ff

5

Configuring tunnels with iproute2

inet 192.168.0.1/24 brd 192.168.0.255 scope global eth0
inet6 fe80::248:54ff:fe1b:2530/10 scope link

4: sit0@NONE: <NOARP> mtu 1480 qdisc noop
link/sit 0.0.0.0 brd 0.0.0.0

5: foo@NONE: <POINTOPOINT,NOARP> mtu 1480 qdisc noop
link/sit 0.0.0.0 peer 192.168.1.42
inet6 3ffe:9001:210:3::42/64 scope global
inet6 fe80::c0a8:1/10 scope link

5.2. Aliasing

When using multiple addresses on a single interface, people used toifconfig will be surprised noting that
multiple ip addr add commands do not generate fictitious interfaces like eth0:1, eth0:2 and so on. This
is a legacy naming scheme coming from the 2.0 kernel version and nowadays no more mandated. For
example:

ip addr add 192.168.0.11/24 dev eth0
ip addr show eth0
2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:48:54:1b:25:30 brd ff:ff:ff:ff:ff:ff
inet 192.168.0.1/24 brd 192.168.0.255 scope global eth0
inet 192.168.0.11/24 scope global secondary eth0
inet6 fe80::248:54ff:fe1b:2530/10 scope link

ifconfig
eth0 Link encap:Ethernet HWaddr 00:48:54:1B:25:30

inet addr:192.168.0.1 Bcast:192.168.0.255 Mask:255.255.255.0
inet6 addr: fe80::248:54ff:fe1b:2530/10 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:0 (0.0 b) TX bytes:528 (528.0 b)
Interrupt:9 Base address:0x5000

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:34732 errors:0 dropped:0 overruns:0 frame:0
TX packets:34732 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:3386912 (3.2 Mb) TX bytes:3386912 (3.2 Mb)

foo Link encap:IPv6-in-IPv4
inet6 addr: 3ffe:9001:210:3::42/64 Scope:Global
inet6 addr: fe80::c0a8:1/10 Scope:Link
UP POINTOPOINT RUNNING NOARP MTU:1480 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

6

Configuring tunnels with iproute2

collisions:0 txqueuelen:0
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Our addictional IP address is reported byip addr show and works, butifconfig doesn’t even know of its
existence! To solve the problem we can use thelabel parameter:

ip addr add 192.168.0.11/24 label eth0:1 dev eth0
ip addr show eth0
2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:48:54:1b:25:30 brd ff:ff:ff:ff:ff:ff
inet 192.168.0.1/24 brd 192.168.0.255 scope global eth0
inet 192.168.0.11/24 scope global secondary eth0:1
inet6 fe80::248:54ff:fe1b:2530/10 scope link

ifconfig
eth0 Link encap:Ethernet HWaddr 00:48:54:1B:25:30

inet addr:192.168.0.1 Bcast:192.168.0.255 Mask:255.255.255.0
inet6 addr: fe80::248:54ff:fe1b:2530/10 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:0 (0.0 b) TX bytes:528 (528.0 b)
Interrupt:9 Base address:0x5000

eth0:1 Link encap:Ethernet HWaddr 00:48:54:1B:25:30
inet addr:192.168.0.11 Bcast:0.0.0.0 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
Interrupt:9 Base address:0x5000

Notice that we can choose any arbitrary string as the label. We’re not forced to use the 2.0 naming
scheme; we must comply to it only if we care having backward compatibility withifconfig.

5.3. Which IP for the tunnel

Choosing a global/public IP address (respectively an IPv6 address for SIT/IPv6-in-IPv4 tunnels and an
IPv4 address for GRE/IPv4-in-IPv4 tunnels) for the local endpoint of the tunnel is probably the best
thing we can do when our computer is a single host and not a router providing IPv6 connectivity to a
whole LAN.

Instead, if we’re configuring a router, we’d better use a link-local address for SIT/IPv6-in-IPv4 tunnels
(in IPv6 link-local addresses are assigned automatically by means of stateless address autoconfiguration
or manually configured) and a private address for GRE/IPv4-in-IPv4 tunnels (IPv4 has no link-local
addresses). The valid address will then be only on eth0 (or the interface on the LAN side). Notice that in
this configuration you need to activate forwarding among interfaces, using these commands:

sysctl -w net.ipv4.conf.all.forwarding=1 # for GRE (IPv4-in-IPv4)

7

Configuring tunnels with iproute2

sysctl -w net.ipv6.conf.all.forwarding=1 # for SIT (IPv6-in-IPv4)

For IPv4 you can even decide to enable forwarding only between a couple of interfaces, in this case you
could use these commands:

sysctl -w net.ipv4.conf.eth0.forwarding=1
sysctl -w net.ipv4.conf.pippo.forwarding=1

Warning

meaning of this switch is different for IPv6 and doesn’t work as expected, see
kernel documentation for more information.

6. Routing

Now that our tunnel is configured, we have to specify which traffic will be directed through it. For IPv6
the most common choice is the following:

ip route add 2000::/3 dev foo

This way all IPv6 traffic going to addresses starting with 3 bits equal to 001 (that is, all global unicast
IPv6 address space) will be directed to the foo interface. This is only one 8th of the available IPv6
address space, but you are guaranteed that every possible remote host will be in this range.

We can see the IPv4 routing table this way:

ip route
192.168.0.0/24 dev eth0 scope link
127.0.0.0/8 dev lo scope link

and the IPv6 routing table this way:

ip -6 route
2000::/3 dev foo proto kernel metric 256 mtu 1480 advmss 1420
fe80::/10 dev eth0 proto kernel metric 256 mtu 1500 advmss 1440
fe80::/10 dev foo proto kernel metric 256 mtu 1480 advmss 1420
ff00::/8 dev eth0 proto kernel metric 256 mtu 1500 advmss 1440
ff00::/8 dev foo proto kernel metric 256 mtu 1480 advmss 1420
default dev eth0 proto kernel metric 256 mtu 1500 advmss 1440
unreachable default dev lo metric -1 error -101

8

Configuring tunnels with iproute2

If you need to specify a gateway (this is not for tunnels) then you can add thevia parameter, for
example:

ip route add 192.168.1.0/24 via 192.168.0.254 dev eth0

To remove a route you can obviously useip route del but be careful: if you writeip route del default
you’re removing the default IPv4 route, not the IPv6 one! To remove the IPv6 default destination you
need to useip -6 route del default.

7. Practical applications

7.1. A complete example

This is a typical IPv6 tunnel for 6bone:

ip tunnel add $TUNNEL mode sit local any remote $V4_REMOTEADDR ttl 64
ip link set $TUNNEL up
ip addr add $V6_LOCALADDR dev $TUNNEL
ip route add 2000::/3 dev $TUNNEL

where$TUNNELis an arbitrary name assigned to the tunnel,$V4_REMOTEADDRis the IPv4 address of
the remote end of the tunnel and$V6_LOCALADDRis the IPv6 local address assigned to our host.
We’ve used theany value for thelocal endpoint address because this way we can handle a dynamic
IPv4 address (e.g. assigned by a dialup connection to the ISP). Obviously we need to inform our tunnel
broker when our address changes but this is out of the scope of this writing, also because there’s no
general standard procedure.

To shut down the tunnel:

ip tunnel del $TUNNEL

also automatically removes the routing entry and the address.

7.2. Comfort

Now, after we made sure everything works, we can use previous commands in a script called
ip-up.local and saved in/etc/ppp/ . This way, those commands will be automatically executed
everytime we connect PPP. If we wanted to also automatically delete the tunnel upon PPP disconnection,
we can create another script in the same directory, and call itip-down.local .

As an example, if our tunnel broker isNGNET, we could use this script asip-up.local :

9

Configuring tunnels with iproute2

#!/usr/bin/perl
##
Auto-setup script for NGNET’s Tunnel Broker.
##

Configuration, fill with your values

my $username = ”;
my $password = ”;
my $interface = ”;
my $v6hname = ”;

Don’t touch anything below this line

my $ngnet_tb = ’163.162.170.173’;
my $ipv6_pref = ’2001:06b8:0000:0400::/64’;
my $url = ’https://tb.ngnet.it/cgi-bin/tb.pl’;

use strict;
use IO::File;
use LWP::UserAgent;

Get our IPv4 address
my $lines;
my $f = IO::File->new();
$f->open("/sbin/ip addr show dev $interface|") or die("$!\n");
$f->read($lines, 4096);
$f->close();
$lines =~ /(\d+\.\d+\.\d+\.\d+)/ or die(’Impossible condition’);
my $v4addr = $1;

Logging in
my $ua = LWP::UserAgent->new(keep_alive => 5);
my $resp = $ua->post($url, {

oper => ’reg_accesso’,
username => $username,
password => $password,
submit => ’Submit’

});
$resp->is_success() or die(’Failed reg_accesso: ’.$resp->message);
$resp->as_string =~ /name=sid.*value=\"([^\"]+)\"/i or die(’Missing sid’);
my $sid = $1;

Retrieve IPv6 addresses
my $myipv6;
my $ipv6end;
$resp = $ua->post($url, {

oper => ’tunnel_info’,
sid => $sid,
username => $username,
submit => ’Submit’

});

10

Configuring tunnels with iproute2

$resp->is_success() or die(’Failed tunnel_info: ’.$resp->message);
$resp->as_string =~ /name=ipv6client.*value=\"([^\"]+)\"/i and $myipv6 = $1;
$resp->as_string =~ /name=ipv6server.*value=\"([^\"]+)\"/i and $ipv6end = $1;
die("missing IPv6 endpoints") unless ($myipv6 and $ipv6end);

Extend tunnel lifetime
$resp = $ua->post($url, {

oper => ’tunnel_extend’,
sid => $sid,
username => $username,
submit => ’Submit’

});
$resp->is_success() or die(’Failed tunnel_extend: ’.$resp->message);

Update parameters on the remote side
$resp = $ua->post($url, {

oper => ’update_parameter’,
sid => $sid,
os_type => ’Linux’,
ipv4client => $v4addr,
fl_entry => $v6hname,
username => $username,
ipv6_pref => $ipv6_pref,
submit => ’Submit’

});
$resp->is_success() or die(’Failed update_parameter: ’.$resp->message);

Set up tunnel on our side
system("/sbin/modprobe ipv6");
system("/sbin/ip tunnel add ngnet mode sit local any remote $ngnet_tb ttl 64");
system("/sbin/ip link set ngnet up");
system("/sbin/ip addr add $myipv6 dev ngnet");
system("/sbin/ip route add 2000::/3 dev ngnet");

ip-down.local could be:

#!/bin/bash
/sbin/ip tunnel del ngnet

8. Thanks

Thank to Giacomo Piva for pppd and NGNET integration idea.

11

Configuring tunnels with iproute2

References

Here are some useful links:

[IANA] Internet assigned numbers authority (http://www.iana.org/).

[ftpsite] iproute2 ftp site (ftp://ftp.inr.ac.ru/ip-routing/).

[RFC2784]Generic Routing Encapsulation (GRE) (http://www.ietf.org/rfc/rfc2784.txt), IETF, March
2000, Farinacci, Li, Hanks, Meyer, Traina.

[RFC2373]IP Version 6 Addressing Architecture (http://www.ietf.org/rfc/rfc2373.txt), IETF, July 1998,
Hinden, Deering.

[RFC2893]Transition Mechanisms for IPv6 Hosts and Routers (http://www.ietf.org/rfc/rfc2893.txt),
IETF, August 2000, Gilligan, Nordmark.

[NGNET] Telecom Italia Lab NGNET (http://www.ngnet.it/).

12

	1. iproute2
	2. Introduction to tunnels
	3. Creating tunnels
	4. Special tunnels
	4.1. GRE tunnels
	4.2. Explicit local endpoint
	4.3. Timetolive

	5. Assigning an IP address to the interface
	5.1. Main address
	5.2. Aliasing
	5.3. Which IP for the tunnel

	6. Routing
	7. Practical applications
	7.1. A complete example
	7.2. Comfort

	8. Thanks
	References

	

