Best practices in
[Pv6-enabled

networking software
development

<mauro @deepspaceb.net>

The IPv6 Protocol - 1

e New version of the Internet Protocol
* Devised by IETF to replace IPv4
* It solves all the problems of IPv4

— Address space exhaustion

— Explosion of routing tables
— Mobility

— Performance and scalability

* IPv6 1s ready for mainstream adoption

<mauro @deepspaceb.net>

The IPv6 Protocol - 2

Enormous address space:

- 340,282,366,920,938,463,463,374,607,431,768,211,456
(27128) possible addresses, ~79*%10727 greater than IPv4

- 665,570,793,348,866,943,898,599 addresses per square meter
on Earth

Aggregatable address space
Mandatory IPSEC support
Stateless address autoconfiguration
Improved mobile networking

Performance and scalability

<mauro @deepspaceb.net>

The transition to IPv6

* All nodes (hosts, routers, firewalls, L3 switches,
etc...) must be upgraded to support IPv6

* [Pv6 connectivity must be provided to LANs and
WANSs

* All applications must be ported to IPv6

* [Pv6 nodes and applications should preserve
compatibility with IPv4

* Very difficult task!!!

<mauro @deepspaceb.net>

The transition scenario - 1
* During the transition phase we'll have mixed IPv4
and IPv6 environments
* Many networks won't have native IPv6 connectivity

* Transition tools and mechanisms will be deployed
to provide IPv6 connectivity to hosts and LANSs

(6TO4, NAT-PT, etc...)
* The network scenarios will be very complex

* Applications must be designed to work 1n all
possible environments

<mauro @deepspaceb.net> 5

The transition scenario - 2

* During the transition we'll have:

— nodes with IPv4 connectivity but no IPv6
connectivity (or support)

— nodes with IPv6 connectivity but no IPv4
connectivity (or support)

— nodes with both IPv4 and IPv6 connectivity

* [Pv4 connectivity may be preferred to IPv6
connectivity or viceversa (cost, reliability, etc...)

* There may be problems with DNS resolution

<mauro @deepspaceb.net>

When will IPv4 die?

* Always too late ;-)

* There are areas in which the shortage of IPv4
addresses 1s really dramatic (especially Asia)

* However, IPv4 1s not going to disappear soon:
— http://potaroo.net/2003-08/ale.html

* NAT, private networks and Realm IP will extend
lifetime of IPv4

* The transition to IPv6 will be probably very long

<mauro @deepspaceb.net>

Applications design guidelines - 1

* Applications should support both IPv4 and IPv6

 Having two different applications, one for IPv4
and the other for IPv6, to handle the same service
1S annoying:
— confusing for the users on client side

— possible inconsistencies on server side

* Applications must work even 1f IPv6 (or IPv4)
support 1s disabled

<mauro @deepspaceb.net>

Applications design guidelines - 2

* There are cases 1n which an application must work only
with a given protocol version (IPv4 or IPv6) or with both of
them:

— 1f a user 1s connecting to a service handled by two different
server applications (one for IPv4 and one for IPv6)

— 1f a developer wants to test IPv6 compliance of his
application

— 1f a developer wants to test an IPv6 transition tool or
mechanism

— a user knows that the service he 1s trying to connect to 1s
available only via a specific protocol version and wants to
speed up the procedure to establish connections to the server
node

<mauro @deepspaceb.net> 9

Applications design guidelines - 3

* [Pv6-enabled applications should allow the expert

user to choose if he wants to use IPv4, IPv6 or
both:

- -4 and -6 options for command line tools
— entries 1n configuration files
* [Pv6-enabled client applications should handle

connectivity problems in a robust way (connection
failover)

* Applications should handle scoped addresses if the
system supports them

<mauro @deepspaceb.net>

1(

Applications design guidelines - 4

* Applications that perform DNS caching must:
— cache both A (IPv4) and AAAA (IPv6) DNS records

— discard cached records as soon as their lifetime expires

* Since many problems can arise from the
interaction of the DNS caching pratice and the use
of dynamic DNS, the expert user should be
allowed to disable application-level DNS caching

* Applications should handle potential problems
related to the malicious use of IPv4-mapped IPv6
addresses on the wire

<mauro @deepspaceb.net>

Applications design guidelines - 3

* It may be desirable to keep also the old IPv4-only
source code and choose at build time 1f the
application must use the old IPv4-only code or the
new IPv6-enabled code:

— portability towards older systems which do not support
IPv6 yet

— to release an IPv6-enabled development version of the
application while retaining production quality IPv4
support code

<mauro @deepspaceb.net>

Applications design guidelines - 6

#ifdef ENABLE_IPv6

/* new |IPv6-enabled code */
#Helse

/* old IPv4-only code */
#endif /* ENABLE_IPv6 */

e ENABLE_IPv6 is defined in one of the application header
files at compile time by the user or the autoconfiguration
process

<mauro @deepspaceb.net>

The Extended BSD Socket API - 1

* IETF has developed an Extended BSD socket API to
introduce support for the IPv6 protocol

* The old BSD socket API was incompatible with IPv6:

— sockaddr_in and in_addr structs are inadequate to store
IPv6 addresses

— 1net_ntoa(3) and inet_aton(3) are inadequate for the
conversion of IPv6 addresses from network to ASCII
string format and viceversa

- gethostbyname(3) and gethostbyaddr(3) cannot handle
scoped IPv6 addresses

<mauro @deepspaceb.net>

The Extended BSD Socket API - 2

The Extended BSD socket API defines the new address
family AF_INET6 and the related protocol family
PF INET6

It also introduces new data structures to store IPv6
addresses: in6_addr and sockaddr _i1n6

To preserve backward compatibility PF_INET6 sockets
do not support only IPv6 but also IPv4

Connection to an IPv4 server application via a PF_INET6
socket 1s supported by means of IPv4-mapped addresses

<mauro @deepspaceb.net>

The Extended BSD Socket API - 3

* [Pv6-enabled server applications which bind to :: will also

bind to 0.0.0.0 and will accept incoming connections via
both IPv4 and IPv6

* Developers can change this default behaviour by setting
the IPV6_VO60ONLY socket option for PF_INET6 sockets

* [PV6_V60ONLY turns off IPv4 compatibility and makes
the PF_INET6 socket support only IPv6

<mauro @deepspaceb.net> 1¢

The Extended BSD Socket API - 4

e Two new functions for conversion of IP address formats:

— 1net_ntop(3) converts IP addresses from network to
presentation (ASCII string) format

— 1net_pton(3) converts IP addresses from presentation
(ASCII string) to network format

* 1net_ntop and inet_pton support both IPv6 and IPv4
addresses and (unlike the old inet_ntoa and inet_aton) are
also reentrant

<mauro @deepspaceb.net>

The Extended BSD Socket API - 5

e Two new functions for DNS name resolution:

— getaddrinfo translates a location and/or a service name
and returns a set of socket addresses that can be used to
connect or bind to the specified service

— getnameinfo translates a socket address structure to a
node and/or service name

* The results returned by getaddrinfo and
getnameinfo are highly configurable

<mauro @deepspaceb.net>

AF-independent apps - 1

Porting applications to IPv6 by simply changing all the
occurrences of AF_INET and sockaddr in to AF INET6 and
sockaddr_1n6 1n most cases 1s not the best approach

Hardcoding AF_INET6 and sockaddr_in6 in the sources:

— undermines the portability of the code

— prevents the application from working properly on dual stack
systems where the IPv6 support 1s disabled

— 1s complex and _ VERY___ bug prone

A preferrable solution 1s the adoption of an AF-independent
development style

The code becomes totally independent from the address family
and we have a complete separation of IPv4 and IPv6 sockets

<mauro @deepspaceb.net> I¢

AF-independent apps - 2

getaddrinfo and getnameinfo have been designed to be
AF-1ndependent

They can provide name-to-address and address-to-name
resolution for all the communication protocols supported
by the system (even not based on DNS)

If called with AF_UNSPEC, getaddrinfo performs
translation for ALL protocols supported by the system

Applications that use getaddrinfo and getnameinto
correctly will automatically take advantage of other
protocol families and communication protocols supported
by the target host

<mauro @deepspaceb.net> 2

AF-independent apps - 3

For generic name-to-address resolution, applications
should call getaddrinfo and try _ EACH___ returned
socket addresses for connecting to the remote service

Server applications should call getaddrinfo with the
AI_PASSIVE flag and bind to __ ALL__ the returned
socket addresses

Generic address-to-name resolution 1s straightforward

To ease the development of AF-independent applications,
the Extended BSD Socket API defines the
sockaddr_storage structure

<mauro @deepspaceb.net>

AF-independent apps - 4

* Writing AF-independent code 1s usually very easy (often
easier than writing non AF-independent code!!!)

* There may be problems with IPV6_V60ONLY

* Not all the systems support that option in the same way:

— some systems (NetBSD, OpenBSD, FreeBSD >= 5.0) turn
IPV6_V60ONLY on by default

— other systems turn IPV6_V60ONLY oft by default, but let sysops
to choose the default behaviour at run time (Linux >= 2.4.21 has
the sysctl configuration option /proc/sys/net/ipv6/bindv6only)

— older systems (Linux < 2.4.21) do __NOT___ support
IPV6_V60ONLY

<mauro @deepspaceb.net>

[Pv4-only broken client code - 1

int connect_wrapper(const char *location, const char *service)

{
int fd;
struct sockaddr_1in sin;
socklen_t salen;

unsigned short servnum = get_serv_num(service);
fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

memset(&sin, 0, sizeof(sin));
salen = sizeof(struct sockaddr_in);
sin.sin_family = AF_INET;
sin.sin_port = servnum;

<mauro @deepspaceb.net>

IPv4-only broken client code - 2

if (inet_aton(location, &sin.sin_addr) !=0) {

if (connect(fd, (struct sockaddr *)&sin, salen) == 0) return {d;
} else {

Int 1;

struct hostent *hp;

hp = gethostbyname(hostname);
memcpy(&sin.sin_addr, hp->h_addr, sizeof(struct in_addr));
if (connect(fd, (struct sockaddr *)&sin, salen) == 0)

return fd;

J

return -1;

<mauro @deepspaceb.net>

IPv4-only broken client code - 3

unsigned short get_serv_num(const char *service)
long int num; char *tail;
unsigned short servnum;

num = strtol(service, &tail, 10);
if (*taill ==0) {
servnum = htons((unsigned short)num);
} else {
sp = getservbyname(argv[1], NULL);
servnum = (unsigned short)sp->s_port;

J

return servnum,

<mauro @deepspaceb.net>

IPv4-only client code - 1

int connect_wrapper(const char *location, const char *service)

{
int 1d;
struct sockaddr_1n sin;
socklen_t salen;

unsigned short servnum = get_serv_num(service);
fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

memset(&sin, 0, sizeof(sin));
salen = sizeof(struct sockaddr_in);
sin.sin_family = AF_INET;
sin.sin_port = servnum;

<mauro @deepspaceb.net>

2

IPv4-only client code - 2

if (inet_aton(location, &sin.sin_addr) !=0) {
if (connect(fd, (struct sockaddr *)&sin, salen) == 0) return fd;

} else {
int 1; struct hostent *hp;

hp = gethostbyname(hostname);

for (1 =0; hp->h_addr_list[1] = NULL; ++1) {
memcpy(&sin.sin_addr, hp->h_addr_list[1], sizeof(struct in_addr));
if (connect(fd, (struct sockaddr *)&sin, salen) == 0)
return fd;

J
J

return -1;

<mauro @deepspaceb.net>

IPv6-enabled client code - 1

int connect_wrapper(const char *location, const char *service)

{

struct addrinfo hints, *res, *ptr;
int fd, connected = O;

fd = socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP);

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET6;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
hints.ai_flags = AI_ VAMAPPED | AI_ALL;

getaddrinfo(location, service, &hints, &res);

<mauro @deepspaceb.net> 2

}

IPv6-enabled client code - 1

for (ptr = res; ptr = NULL; ptr = ptr->ai_next) {
if (connect(fd, ptr->ai_addr, ptr->ai_addrlen) == 0) {
connected = 1;
break;

J
J

freeaddrinfo(res);

return (connected ? {d : -1);

<mauro @deepspaceb.net>

2!

AF-independent client code - 1

int connect_wrapper(const char *location, const char *service)

{

struct addrinfo hints, *res, *ptr;
socklen_t salen;
int fd, connected = 0O;

memset(&hints, 0, sizeof(hints));
hints.a1_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_ ADDRCONFIG;

getaddrinfo(location, service, &hints, &res);

<mauro @deepspaceb.net>

3

AF-independent client code - 2

for (ptr = res; ptr = NULL; ptr = ptr->ai_next) {
int fd = socket(ptr->ai_family, ptr->ai_socktype, ptr->ai_protocol);
if (fd < 0) {
if (unsupported_sock_error(errno)) continue;
return -1; /* this 1s a fatal error */
}
if (ptr->ai_family == AF_INET6)
setsockopt(fd, IPPROTO_IPV6, IPV6_VO60ONLY, &on, sizeof(on));
if (connect(fd, ptr->ai_addr, ptr->ai_addrlen) == 0) {
connected = 1; break;
} else close(fd);

J

freeaddrinfo(res);
return (connected ? 1d : -1);

}

<mauro @deepspaceb.net>

AF-independent client code - 3

int unsupported_sock_error(int err)
{
return (err == EPENOSUPPORT ||

err == EAFNOSUPPORT ||
err == EPROTONOSUPPORT ||
err == ESOCKTNOSUPPORT I
err == ENOPROTOOQOPT) ?
1: 0;

<mauro @deepspaceb.net>

IPv4-only server code - 1

int bind_wrapper(const char *service, callback_t fn)

{

int fd, ns;

struct sockaddr_1n sin;

socklen_t salen;

unsigned short servnum = get_serv_num(service);

memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY:;
sin.sin_port = servnum;

fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

<mauro @deepspaceb.net>

[Pv4-only server code - 2

salen = sizeof(struct sockaddr_in);
bind(fd, (struct sockaddr *)&sin, salen);
listen(fd, SOMAXCONN);

for(;;) {

if ((ns = accept(fd, NULL, NULL)) >= 0) fn(ns);
}

return O;

<mauro @deepspaceb.net>

IPv6-enabled server code - 1

int bind_wrapper(const char *service, callback_t fn)

{

int fd, ns;

struct sockaddr in6 sin6;

socklen_t salen;

unsigned short servnum = get_serv_num(service);

memset(&sin6, 0, sizeof(sinbd));
sin6.s1n6_family = AF_INETG6;
sin6.sin6_addr = in6addr_any;
sin6.sin6_port = servnum;

fd = socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP);

<mauro @deepspaceb.net>

IPv6-enabled server code - 2

salen = sizeof(struct sockaddr_in6);
bind(fd, (struct sockaddr *)&sin6, salen);
listen(fd, SOMAXCONN);

for(;;) {

if ((ns = accept(fd, NULL, NULL)) >= 0) fn(ns);
}

return O;

<mauro @deepspaceb.net>

3t

AF-independent server code - 1

int bind_wrapper(const char *service, callback_t fn)

{

struct addrinfo hints, *res, *ptr;
socklen_t salen;

int fd, on = 1;

fd_set bound_sockets;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE;

getaddrinfo(NULL, service, &hints, &res);

FD_ZERO(bound_sockets); maxfd =-1;

<mauro @deepspaceb.net>

AF-independent server code - 2

for (ptr = res; ptr = NULL; ptr = ptr->ai_next) {
int td = socket(ptr->ai_tamily, ptr->ai_socktype, ptr->ai_protocol);
if (fd < 0) {
if (unsupported_sock_error(errno)) continue;
return -1; /* this 1s a fatal error */
}
if (ptr->ai_family == AF_INET6)
setsockopt(fd, IPPROTO_IPV6, IPV6_V60ONLY, &on, sizeof(on));
if (bind(fd, ptr->ai_addr, ptr->ai_addrlen) == 0) {
FD_SET(bound_sockets); if (fd > max_fd) max_fd = fd;
} else {
close(fd); continue;

}
listen(fd, SOMAXCONN);

J

freeaddrinfo(res);

<mauro @deepspaceb.net> 3.

AF-independent server code - 3

for (;;) {
int ns, tmptd, tmpfd2 = max_f{d;
fd_set read_fds = bound_sockets;

select(max_fd + 1, read_fdset, NULL, NULL, NULL);

while(tmpfd2 >=0) {
tmpfd = tmpfd?2;
do { --tmpid; } while (tmpfd >= 0 && 'FD_ISSET(tmpid, &read_1ds));
if (tmpfd >=0 &&

((ns = accept(tmpid, NULL, NULL)) >=0)) fn(ns);

tmpfd2 = tmpfd;

}

}

return O;

<mauro @deepspaceb.net> 3

Autoconfiguration - 1

Autoconfiguration systems split the building process in
two steps: a configuration step and a build step

The autoconfiguration script discovers IPv6 compliance
of the system

The code 1s compiled according to the information
provided by the autocontiguration system

GNU autoconf 1s an invaluable help when writing
portable IPv6-enabled software

The autoconfiguration process for IPv6-enabled code 1s
very complex

<mauro @deepspaceb.net>

A

Autoconfiguration - 2

* The autoconfiguration script should check:

— 1f the system supports the IPV6_V60ONLY option and
if that option 1s set by default

— 1f the getaddrinfo function supports all the flags
defined by RFC3493

— 1f the system (sockaddr_in6, getaddrinfo,
getnameinfo) supports scoped IPv6 addresses

— 1f the systems supports the Extended BSD socket API
via a system library that the application must
explicitly link

<mauro @deepspaceb.net>

Autoconfiguration - 3
TYPE_STRUCT_SOCKADDR_STORAGE([AC_MSG_ERROR(][...D])

1pv6=
AC_ARG_ENABLE(pv6,
AC_HELP_STRING([--disable-ipv6],[disable IPv6 support]),
[case "${enable_ipv6}" in
no)
AC_MSG_NOTICE([Disabling IPv6 at user request])
1pv6=no

1pvb=yes

esac],
[1ipvb=yes])

<mauro @deepspaceb.net> 4.

Autoconfiguration - 4

if test "X$ipv6" = "Xyes"; then
TYPE_STRUCT_SOCKADDR_IN6(,|AC_MSG_NOTICE(]...])
1pv6=no
)
MEMBER_SIN6_SCOPE_ID
fi

if test "X$ipv6" = "Xyes"; then
PROTO_INET6(,[AC_MSG_NOTICE(]...])
1pv6=no
)
fi
if test "XS$ipv6" = "Xyes"; then
AC_DEFINE([ENABLE_IPV6], 1, [Define if IPv6 support 1s enabled.])
fi

<mauro @deepspaceb.net> 4.

Autoconfiguration - 3

AC_ARG_ENABLE(stack-guess,
AC_HELP_STRING([--disable-stack-guess],[disable stack guess]),
[case "${enable_stack_guess}" in
yes)

stack_guess=yes
no)
stack_guess=no

AC_MSG_ERROR(]...])

29

esac],
[stack_guess=yes]

)

<mauro @deepspaceb.net>

Autoconfiguration - 6

if test "X$stack_guess" !="Xno"; then
IN6_GUESS_STACK
NC6_CFLAGS="${NC6_CFLAGS} ${INET6_CFLAGS}"
LIBS="${INET6_LIBS} ${LIBS}"

f1

AC_CHECK_FUNCS(
[getaddrinfo freeaddrinfo gai_strerror getnameinfol],,
AC_MSG_ERROR(]...])

)

<mauro @deepspaceb.net>

Autoconfiguration - 7

GETADDRINFO_AI_ADDRCONFIG(
AC_DEFINE([HAVE_GETADDRINFO_AI_ADDRCONFIG], 1,
[Define if the system headers support the AI_ ADDRCONFIG flag.]))

GETADDRINFO_AI_V4MAPPED(
AC_DEFINE(|JHAVE_GETADDRINFO_AI_V4MAPPED], 1,
[Define if the system headers support the AI_V4MAPPED flag.]))

GETADDRINFO_AI_ALL(

AC_DEFINE(|JHAVE_GETADDRINFO_AI_ALL], 1,
[Define if the system headers support the AI_ALL flag.]))

<mauro @deepspaceb.net> il

Testing IPv6-enabled software

Since IPv6 support 1s very different from one platform to
the other, extensive testing of IPv6-enabled networking
code 1s of great importance

Developers should also use tools to verify the conformance
of the Extended BSD socket API implementation of the
target systems to the latest IETF standards

libds6

- testgetaddrinfo, testgetnameinfo, getaddrinfo
— dumpsockaddr, dumpaddrinfo

nc6

<mauro @deepspaceb.net>

™. Deep Space & - The Linux IPv6 Portal - Mozilla

. File Meodifica Visualizza Vai Segnalibri Strumenti Finestre Guida

E@QO @ O I%file:ﬂfhumefmaurnfcndefcvs.:’websitefindex.hrml

-] |G, Cerca | ':::igc

! % Home [E3Segnalibri % MandrakeSoft % Mandrake Linux % MandrakeStore % MandrakeExpent %: MandrakeClub % MandrakeOnline = MandrakeSecure % §

= o
HOH

About Us

Sources
Ccvs

E

Links
Mailing Lists
Contribute

Documentation

Welcome to Deep Space 6, the Linux IPv6 Poral. We are working to enhance the Linux implementation of the IPvé
protocol and to provide information and support to users and developers who want to learn more about IPvé and its use

with Linux. You can join us subscribing to our mailing lists.

Deep Space 6 News

29th Sep 2003

A new CVS snapshot of the USAGI kit has been released.

Here you can find the two versions of the package; USAGI snap kit for Linux 2.4 and USAGI snap kit
for Linux 2.6.

26th Sep 2003

Major update of the Current Status of IPv6 Support for Networking Applications page; updated entries
of ProFTPd and XMMS and added entries for gnomemeeting, sylpheed-claws and Ximian Eveolution
{thanks to Christian Strauf), added entries for dbind and prometeo (thanks to Enrico Ardizzoni),
updated entry of totd and added entry for moftpd.

15th Sep 2003

Maure Tortonesi will present a talk named Best practices in the development of IPv6 networking
software at the next Linux Kongress 2003 in Saarbrucken, Germany on Thursday, Oct 16th.

15th Sep 2003

A new CVS snapshot of the USAGI kit has been released.

|
o]

Here vt ran find the hwn woarsinns of the nackane- LISAG] snan kit for linny 2 4 and il‘:.ﬂul'?-iI cnan kit
|

ﬁ ﬁ { == &5 %

http://www.deepspace6b.net

<mauro @deepspaceb.net>

Conclusions

* Writing IPv6-enabled applications 1s very
difficult as it requires more in-depth knowledge
of the IP networking protocol

* If properly written, IPv6-enabled applications can
easily support other communication protocols

e [Pv6 1s going to mainstream, so begin porting
your networking applications IMMEDIATELY !!!

<mauro @deepspaceb.net>

4

Suggestions

* Visit http://www.deepspace6.net, read the
documentation and subscribe to the ds6 and ds6-
devel mailing lists

 Upgrade to a Linux kernel release >= 2.4.21

* Install libinet6 from USAGI project
(http://www.linux-1pv6.0rg) on your host

* Take a look at example-ipv6-package

e Test and debug your applications with nc6 and
libds6

<mauro @deepspaceb.net>

5(

Acknowledgements

* Dr. Peter Bieringer and Simone Piunno (co-
founders of Deep Space 6)

* Chris Leisham and Filippo Natali (co-authors of
nco)

* Jun-ichiro “itojun” Hagino

e Prof. Cesare Stefanelli and Dr. Michele Balestra

<mauro @deepspaceb.net>

Questions”’

<mauro @deepspaceb.net>

