The IPv6 Protocol

Mauro Tortonesi mauro@deepspace6.net>

Limits of good old IPv4

- The current version of IP protocol presents some serious limits:
 - Address space exhaustion
 - Explosion of routing tables
 - Mobility
 - Performance and scalability
- These are structural problems and cannot be fixed!!!

Address space exhaustion

- Extremely inefficient address assignment policy
- Until 1993 address assignment was in fixed-sized blocks: 16.776.214 (class A), 65.534 (class B) or 254 (class C) units
- These blocks are too big or too small for the effective needs of organizations
- Enormous address waste
- Once there will be no addresses available, the Internet could not grow anymore, except using...

Network Address Translation

- Don't do it!!! NAT is plain evil!!!
- Single point of failure
- Breaks end-to-end topology of TCP connections
- Problems with Mobile IP, VPN, FTP, TCP TIME_WAIT state etc...
- Complicates the use of multi-homing
- NATs enable casual use of private addresses
- False sense of security (NAT is not a packet filter)
- And much more!!! (see RFC 2993 Architectural Implications of NATs)

Explosion of routing tables

- IPv4 address space is not aggregatable
- Size of routing tables depends from the number of networks connected to the Internet
- As the routing tables grow larger, complexity of routing process increases and performance drops
- May lead to routing stability problems (often very hard to fix!!!)

Classless Inter-Domain Routing

- More efficient address assignment: contiguous class C blocks allocated on geographic basis
- Creation of an aggregatable subspace in the IPv4 address space
- Routing decisions are made according to "longest matching prefix" rule
 - if packet dest is 5.6.7.8 and router has both 5.6.0.0/16 and 5.6.7.0/24 routes, the packet will be sent to the 2nd one
- Smaller routing tables
- Short-term solution that extends IPv4 lifetime

BGP RT size

• Picture taken from http://bgp.potaroo.net

(Data Gathered from AS1221 and Route-Views)

Problems in Mobility and Scalability

- Mobile IP is not a good solution for mobile computing
 - Performance problems (triangle routing)
 - Need to deploy FAs in visited networks
 - No security
 - Problems with NAT
- IPv4 has not been designed to be scalable
 - Complex header w/o common case optimization
 - Fragmentation
 - Inadequate min (576) and max (64KB) packet size

Future scenario

- New markets are developing in the ICT sector:
 - Personal / Mobile Devices
 - Networked Entertainment
 - Device Control
- IPv4 cannot satisfy the requirements posed by these new markets

The IPv6 solution

- New version of the Internet Protocol
- Well-defined evolution of IPv4
- Devised by IETF to replace IPv4
- It solves many of the problems with IPv4
- It is ready for mainstream adoption

The IPv6 protocol

- Enormous address space
- Aggregatable address space
- Mandatory IPSEC support
- Advanced autoconfiguration functions
- Improved mobile networking
- High levels of performance and scalability

Enormous address space

- IPv6 addresses are 128 bits long
- 2^128 (~ 340*10^36) possible addresses (340,282,366,920,938,463,463,374,607,431,768,211,456)
- Address space 2^96 (~ 79*10^27) times bigger than IPv4 one (79,228,162,514,264,337,593,543,950,336)
- 665,570,793,348,866,943,898,599 addresses per square meter on Earth!!!
- IPv6 allows the Internet to grow with exponential pace for the next 30 years (RFC1715, RFC3194)

- Hexadecimal packed representation:
 - FEDC:BA98:7654:3210:FEDC:BA98:7654:3210
 - Sequences of zeros are shortened to "::" (e.g. 1080:0:0:0:0:0:200C:417A == 1080::200C:417A)
 - "::" can be used only once for each address
- In mixed IPv4 and IPv6 environments it may sometimes be useful an hybrid notation:
 - ::FFFF:5.6.7.8 (IPv4-mapped address)
 - ::5.6.7.8 (IPv4-compatible address)
 - 2002:5.6.7.8::1 (6to4 address)

- IPv6 addresses are assigned to network interfaces
- Three different address tipologies:
 - Unicast
 - Anycast
 - Multicast
- Four addressing scopes:
 - Link local (FE80::/10)
 - Site local (FEC0::/10) NOW DEPRECATED!!!
 - Global, Unicast & Routable (2000::/3)
 - Multicast (FF00::/8)

- 6 (out of 16) multicast scopes:
 - interface-local (useful only for loopback)
 - link-local
 - admin-local
 - site-local
 - organization-local
 - global
- Examples
 - FF05::2 (all routers on site)
 - FF02::1 (all nodes on link)

- Special type addresses:
 - Unspecified address (::/128)
 - Localhost address (::1/128)
 - IPv4-mapped (::FFFF:V4ADDR/96)
 - IPv4-compatible (::V4ADDR/96)
 - 6to4 (2002:V4ADDR::/48)
 - Solicited node multicast address (used for DAD)
 - Subnet-router anycast address
 - Many, MANY, ***__MANY___*** more...

Aggregatable address space

- Routing decisions are made according to the "longest matching prefix" rule
 - if packet dest is 2001:abcd::1 and router has both 2001::/16 and 2001:ab::/24 routes the packet will be sent to the 2nd one
- Routing table size optimization
- Format of global routable unicast IPv6 address:

3	13	8	24	16	64 bits
FP	TLA ID	RES	NLA ID	SLA ID	Interface ID

Mandatory IPSEC support

- Support for authentication and privacy
- IPv6 has native IPSEC support
 - AH (Authentication Header)
 - ESP (Encapsulated Security Payload)
- Securing data at network layer is sometimes better than doing it at transport layer (e.g. SSL)
- Allows the creation of VPNs (Virtual Private Networks)

Advanced autoconfiguration functions

- Two different kinds of address autoconfiguration for networking interfaces
 - DHCPv6
 - Stateless Address Autoconfiguration
- Support for (almost) automatic renumbering
- Minimization of human intervention costs

Stateless Address Autoconfiguration

- Prefix of link is obtained by router advertisement
- Interface ID is obtained by MAC address

- Mobile IPv6 is more performant than Mobile IP ...
 - Route optimization included in the protocol
 - Use of Routing Header instead of encapsulation
 - Dynamic Home Address Discovery uses anycast and returns a single response to the mobile node
 - Large use of piggybacking thanks to Dest. Options
- ... more secure ...
 - Mandatory use of IPSEC
 - Packet filtering is easier to perform

- ... more robust and flexible
 - Use of Neighbor Discovery instead of ARP
 - Better support for multicast traffic
 - No more Foreign Agents
 - Bidirectional movement detection mechanism
 - New "Advertisement Interval" option on Router Advertisements

• Mobile IP operations:

• Mobile IPv6 operations:

- IPv6 headers are only 2 times bigger than IPv4 ones, even if IPv6 addresses are 4 times longer
- No more checksum at network layer
- Handling IP options is easier
- Fragmentation is made only on source host, not from routers along the communication path
- Lower overhead than IPv4

• IPv4 headers are complex (variable length, many fields):

0	3	3 1	6	24	31			
	Version	IHL	3					
	Identif	ication	Flags	lags Fragment Offset				
	TTL	Protocol	Header Checksum					
	Source Address							
Destination Address								
	Ç	Options		Padding				

• IPv6 headers are simpler and have 64-bit aligned fields:

0	8	16	2	24	31			
Ver.	Traffic Class	Flow Label						
Pa	ayload Lengt	Na 📗 🔞	Next eader	Нор	Limit			
Source Address								
Destination Address								

- IPv6 outperforms IPv4
- Protocol implementation is easier and cheaper (especially on small battery-operated devices)
- IPv6 can make full use of
 - High bandwidth/performance networks
 - Computational capabilities of supercomputers in highly-distributed computation environments

The transition to IPv6 - 1

- All nodes (hosts, routers, firewalls, L3 switches, etc...) must be upgraded in order to support IPv6
- IPv6 connectivity must be provided to LANs and WANs
- All applications must be ported to IPv6
- IPv6 nodes and applications should preserve compatibility with IPv4
- Very difficult task!!!

The transition to IPv6 - 2

- The transition will be a long and delicate process
- It must be completed before the total collapse of IPv4 routing and addressing capabilities
- To have a successful (or not too painful) transition we need:
 - High interoperability between IPv4 and IPv6 host
 - Maximum flexibility in the deployment of an IPv6 node in an IPv4 network
 - Easy migration from IPv4 to IPv6 services

The transition scenario - 1

- During the transition phase we'll have mixed IPv4 and IPv6 environments
- Many networks won't have native IPv6 connectivity
- Transition tools and mechanisms will be deployed to provide IPv6 connectivity to hosts and LANs (6TO4, NAT-PT, etc...)
- The network scenarios will be very complex
- Applications must be designed to work in all possible environments

The transition scenario - 2

- During the transition we'll have:
 - nodes with IPv4 connectivity but no IPv6 connectivity (or support)
 - nodes with IPv6 connectivity but no IPv4 connectivity (or support)
 - nodes with both IPv4 and IPv6 connectivity
- IPv4 connectivity may be preferred to IPv6 connectivity or viceversa (cost, reliability, etc...)
- There may be problems with DNS resolution

Towards the IPv6 Internet

- So far the native IPv6 routing infrastructure is not very extended
- There may not be a native routing path between two IPv6 peers
- A possible solution is to use the existing IPv4 infrastructure to route IPv6 packets
- We can build virtual IPv6 links with IPv6-in-IPv4 tunnels

IPv6-in-IPv4 tunnels - 1

- IPv6 packets are encapsulated in IPv4 packets and then routed to destination via the IPv4 Internet inftastructure
- Once they arrive to destination, IPv6 packets are first decapsulated and then processed by IPv6 stack

IPv6-in-IPv4 tunnels - 2

• Typical LAN-to-LAN tunnel usage:

Transition techniques - 1

- Connection between IPv6 native "islands":
 - Manually configured tunnels
 - Automatic tunnels
 - Tunnel Brokers
 - BGP Tunnels
 - 6TO4

Transition techniques - 2

- Connection between IPv6 hosts inside an IPv4-only LAN:
 - ISATAP
 - 60VER4

Transition techniques - 3a

- Communication between IPv4-only and IPv6-only nodes:
 - Dual stack model / Limited Dual stack model
 - SOCKS64
 - NAT-PT
 - SIIT

Transition techniques - 3b

- Communication between IPv4-only and IPv6-only nodes:
 - BIS (Bump-In-The-Stack) / BIA (Bump-In-The-API)
 - Transport Relay Translator
 - DSTM (Dual Stack Transition Mechanism)
 - Shipworm/Teredo

IPv6 and DNS

- Name to address resolution
 - AAAA records (simple extension of IPv4 A records)
 - A6 records (experimental, supports multihoming and renumbering but is a potential security threat)
- Address to name resolution
 - IN6.INT domain (deprecated but still used)
 - IN6.ARPA domain

Backward compatibility

- To support the new protocol, all existing TCP/IP software must be modified
- Many operating systems already offer a rather advanced IPv6 support
- Many applications altrady support IPv6
- Commercial routers (Cisco, Juniper) already offer (at least partial or experimental) IPv6 support
- There is still a lot of work to do

Linux & IPv6 - Status

- The Linux kernel has IPv6 support since 1998
- All the major distros have an IPv6-enabled kernel
- Glibc is IPv6-enabled (apart from RPC)
- Most of the applications are IPv6-enabled (see the IPv6 Status Page for applications at DS6)
- USAGI project (http://www.linux-ipv6.org) distributes a patch for both userspace applications and kernel

Linux & IPv6 - Basic setup - 1

- Check if your distro has IPv6 support
 - test -f/proc/net/if_inet6 && echo "IPv6 support"
- If IPv6 support has been compiled as a module
 - modprobe ipv6
 - echo "alias net-pf-10 ipv6" >> modprobe.conf
- You may need to recompile your kernel http://www.deepspace6.net/docs/best_ipv6_support.html

Linux & IPv6 - Configuration - 1

- Use ip addr for manual configuration of IPv6 addressess:
 - ip -6 addr add 2001:dead:beef::1/64 dev eth0
 - ip -6 addr del 2001:dead:beef::1/64 dev eth0
- Use ip route for manual configuration of IPv6 routes:
 - ip -6 route add 2000::/3 via 2001:dead:beef::1
 - ip -6 route del 2000::/3 via 2001:dead:beef::1
- Use ip neigh for manual configuration of neighbours (just like static ARP cache in IPv4)

Linux & IPv6 - Configuration - 2

• Use ip tunnel for manual configuration of IPv6 tunnels

```
ip tunnel add sit1 mode sit ttl default_ttl remoteipv4_remote_endpoint local ipv4_local_endpointip link set dev sit1 upip -6 route add ipv6_prefix dev sit1 metric 1
```

• To manually delete a tunnel

```
ip -6 route del ipv6_prefix dev sit1 ip link set sit1 down ip tunnel del sit1
```

Linux & IPv6 - Testing

- Many testing and debugging tools are available
 - netstat from net-tools
 - ping6 from iputils
 - traceroute6 and tracepath6 from iputils
 - nmap
 - tcpdump and/or ethereal
- nc6 from netcat6 can be very useful for testing applications & services
 - echo "GET http://myhost" | nc6 myhost 80

Linux & IPv6 - DNS - 1

• BIND supports IPv6

```
options {
     # to listen also on IPv6
     listen-on-v6 { none; };
};
acl example-acl {
     127.0.0.1;
     172.24.0.0/16;
     2001:dead:beef::/64;
     ::1/128;
     ::ffff:172.24.0.104/128;
```

Linux & IPv6 - DNS - 2

• Direct resolution

\$ORIGIN mynetwork.org. myhost IN AAAA 2001:dead:beef::1

• Inverse resolution using IP6.INT (nibble based)

\$ORIGIN 0.0.0.0.f.e.e.b.d.a.e.d.1.0.0.2.ip6.int. 1.0.0.0.0.0.0.0.0.0.0.0.0.0.0 IN PTR myhost.mynetwork.org

• Inverse resolution using IP6.ARPA (bitstring based)

\$ORIGIN \[x2001deadbeef0000/64].ip6.arpa. \[0000000000000001/64] IN PTR myhost.mynetwork.org

Linux & IPv6 - Radvd

Use radvd to advertise network prefix

```
interface eth0 {
    AdvSendAdvert on;
    MinRtrAdvInterval 3;
    MaxRtrAdvInterval 10;
    prefix 2001:dead:beef::/64
         AdvOnLink on;
         AdvAutonomous on;
         AdvRouterAddr on;
     };
```

Linux & IPv6 - Web Servers

- Apache 2 supports IPv6
- Works with VirtualHost, too!

```
Listen [2001:dead:beef::1]:80
Listen 5.6.7.8:80
</irtinalHost [2001:dead:beef::1]:80 5.6.7.8:80>
ServerName myhost.mynetwork.org
...
</iv>
```

• Many other HTTP server support IPv6 (boa, thttpd, webfs, bozohttpd, etc...)

Linux & IPv6 - Web Clients

- Many web browsers/clients support IPv6
 - Mozilla
 - Konqueror
 - Opera
 - lynx, elinks
 - wget, httrack, cURL, etc...
- IPv6 address can be used on URLs (RFC2372)
 - http://[2001:dead:beef::1]/path
- Not all web proxies are IPv6 enabled

Linux & IPv6 - FTP

- Most FTP server support IPv6
 - vsftpd
 - pure-ftpd
 - proftpd
 - oftpd, etc...
- Many FTP clients support IPv6
 - lftp
 - ncftp
 - wget, etc...

Linux & IPv6 - Email - 1

- Many SMTP servers natively support IPv6
 - Sendmail
 - Exim
 - Courier
- Patches to add IPv6 support to many SMTP servers are available
 - Postfix
 - Qmail

Linux & IPv6 - Email - 2

- Many IMAP/POP servers natively support IPv6
 - dovecot
 - courier
- Most email clients support IPv6
 - mutt
 - kmail
 - sylpheed (also sylpheed-claws)
 - mozilla-mail
 - fetchmail

Linux & IPv6 - Programming Languages

- Linux supports the Extended BSD Socket API for socket-based applications written in C
- Perl supports IPv6
 - NET::Socket6
 - IO::INET6
- Python supports IPv6
- Ruby supports IPv6
- Java supports IPv6

Linux & IPv6 - Misc services

- Other famous IPv6 enabled packages:
 - openssh
 - openldap
 - xinetd
 - netkit-inetd+tcpd
 - xntpd
 - X Windows (both XFree86 and X.org)

So, when will IPv4 die?

- Always too late ;-)
- There are areas in which the shortage of IPv4 addresses is really dramatic (especially Asia)
- However, IPv4 is not going to disappear soon:
 - http://potaroo.net/2003-08/ale.html
- NAT, private networks and Realm IP will extend lifetime of IPv4
- The transition to IPv6 will be probably very long

Conclusions

• IPv6 is going to mainstream, so consider starting the migration of your network, applications and services to IPv6 RIGHT NOW!!!

Suggestions

- Read the Linux IPv6 HOWTO
- Visit http://www.deepspace6.net
 - read the documentation
 - subscribe to the ds6 mailing list
 - maybe subscribe to the ds6-devel mailing list
- Start the migration to IPv6
 - ask your ISP for IPv6 connectivity
 - subscribe to a free tunnel broker service
 - setup 6to4 on your network

Acknowledgements

- Simone Piunno (co-founder of Deep Space 6)
- Peter Bieringer (co-founder of Deep Space 6)
- Chris Leisham (co-author of netcat6)
- Filippo Natali (co-author of netcat6)

http://www.deepspace6.net

Questions?

IPv6 FAQs

- What happened to IP version 5?
- Weren't 64 bits enough for IPv6 addresses?
- Do the USA need IPv6 too?
- Will you put this slides on the web?